publications

see Google Scholar for the most up-to-date information.

journal and conference articles

2024

  1. NeurIPS
    ChaosBench: A multi-channel, physics-based benchmark for subseasonal-to-seasonal climate prediction
    Juan Nathaniel, Yongquan Qu, Tung Nguyen, Sungduk Yu, Julius Busecke, Aditya Grover, and Pierre Gentine
    In Advances in Neural Information Processing Systems (NeurIPS), 2024
    Oral Presentation [top 0.6%].
  2. NeurIPS
    Probing the Decision Boundaries of In-context Learning in Large Language Models
    Siyan Zhao, Tung Nguyen, and Aditya Grover
    In Advances in Neural Information Processing Systems (NeurIPS), 2024
  3. NeurIPS
    Scaling transformer neural networks for skillful and reliable medium-range weather forecasting
    Tung Nguyen, Rohan Shah, Hritik Bansal, Troy Arcomano, Romit Maulik, Veerabhadra Kotamarthi, Ian Foster, Sandeep Madireddy, and Aditya Grover
    In Advances in Neural Information Processing Systems (NeurIPS), 2024
    Best Paper Award at the ICLR Workshop on Tackling Climate Change with AI.
  4. ICLR
    Peering Through Preferences: Unraveling Feedback Acquisition for Aligning Large Language Models
    Hritik Bansal, John Dang, and Aditya Grover
    In International Conference on Learning Representations, 2024
  5. ICLR
    Group Preference Optimization: Few-Shot Alignment of Large Language Models
    Siyan Zhao, John Dang, and Aditya Grover
    In International Conference on Learning Representations, 2024
  6. ECCV
    Mamba-nd: Selective state space modeling for multi-dimensional data
    Shufan Li, Harkanwar Singh, and Aditya Grover
    In European Conference on Computer Vision (ECCV), 2024
    Oral Presentation.
  7. CVPR
    VideoCon: Robust Video-Language Alignment via Contrast Captions
    Hritik Bansal, Yonatan Bitton, Idan Szpektor, Kai-Wei Chang, and Aditya Grover
    In IEEE / CVF Conference on Computer Vision and Pattern Recognition, 2024

2023

  1. NeurIPS
    Decision Stacks: Flexible Reinforcment Learning Via Modular Generative Models
    Siyan Zhao, and Aditya Grover
    In Advances in Neural Information Processing Systems (NeurIPS), 2023
  2. NeurIPS
    ExPT: Synthetic Pretraining for Few-Shot Experimental Design
    Tung Nguyen, Sudhanshu Agarwal, and Aditya Grover
    In Advances in Neural Information Processing Systems (NeurIPS), 2023
  3. NeurIPS
    ClimateLearn: Benchmarking Machine Learning for Weather and Climate Modeling
    Tung Nguyen, Jason Jewik, Hritik Bansal, Prakhar Sharma, and Aditya Grover
    In Advances in Neural Information Processing Systems (NeurIPS), 2023
  4. ICML
    ClimaX: A foundation model for weather and climate
    Tung Nguyen, Johannes Brandstetter, Ashish Kapoor, Jayesh K Gupta, and Aditya Grover
    In International Conference on Machine Learning (ICML), 2023
    Best Paper Award at the ICML Workshop on Synergy of Scientific and Machine Learning Modeling.
  5. ICML
    Generative Pretraining for Black-box Optimization
    Satvik Mehul Mashkaria, Siddarth Krishnamoorthy, and Aditya Grover
    In International Conference on Machine Learning (ICML), 2023
  6. ICML
    Semi-Supervised Offline Reinforcement Learning with Action-Free Trajectories
    Qinqing Zheng, Mikael Henaff, Brandon Amos, and Aditya Grover
    In International Conference on Machine Learning (ICML), 2023
  7. ICML
    Diffusion Models for Offline Black-Box Optimization
    Siddarth Krishnamoorthy, Satvik Mehul Mashkaria, and Aditya Grover
    In International Conference on Machine Learning (ICML), 2023
  8. ICLR
    Scaling Pareto-Efficient Decision Making via Offline Multi-Objective RL
    Baiting Zhu, Meihua Dang, and Aditya Grover
    In International Conference on Learning Representations (ICLR), 2023
  9. ICCV
    CleanCLIP: Mitigating Data Poisoning Attacks in Multimodal Contrastive Learning
    Hritik Bansal, Nishad Singhi, Yu Yang, Fan Yin, Aditya Grover*, and Kai-Wei Chang*
    In International Conference on Computer Vision (ICCV), 2023
    Oral Presentation [top 1.8%], Best Paper Award at the ICLR Workshop on Reliable and Trustworthy Large Scale Machine Learning Models.

2022

  1. TMLR
    Controllable Generative Modeling via Causal Reasoning
    Joey Bose, Ricardo Pio Monti, and Aditya Grover
    Transactions of Machine Learning Research (TMLR), 2022
  2. NeurIPS
    Masked Autoencoding for Scalable and Generalizable Decision Making
    Fangchen Liu, Hao Liu, Aditya Grover, and Pieter Abbeel
    In Advances in Neural Information Processing Systems (NeurIPS), 2022
  3. NeurIPS
    CyCLIP: Cyclic Contrastive Language-Image Pretraining
    Shashank Goel, Hritik Bansal, Sumit Bhatia, Ryan A Rossi, Vishwa Vinay, and Aditya Grover
    In Advances in Neural Information Processing Systems (NeurIPS), 2022
    Oral Presentation [top 2%].
  4. ICML
    Online decision transformer
    Qinqing Zheng, Amy Zhang, and Aditya Grover
    In International Conference on Machine Learning (ICML), 2022
    Long Oral Presentation.
  5. ICML
    Transformer neural processes: Uncertainty-aware meta learning via sequence modeling
    Tung Nguyen, and Aditya Grover
    In International Conference on Machine Learning (ICML), 2022
  6. ICML
    Matching normalizing flows and probability paths on manifolds
    Heli Ben-Hamu, Samuel Cohen, Joey Bose, Brandon Amos, Aditya Grover, Maximilian Nickel, Ricky Chen, and Yaron Lipman
    In International Conference on Machine Learning (ICML), 2022
  7. ICLR
    It Takes Four to Tango: Multiagent Selfplay for Automatic Curriculum Generation
    Yuqing Du, Pieter Abbeel, and Aditya Grover
    In International Conference on Learning Representations (ICLR), 2022
  8. ICLR
    Frame averaging for invariant and equivariant network design
    Omri Puny, Matan Atzmon, Heli Ben-Hamu, Edward J Smith, Ishan Misra, Aditya Grover, and Yaron Lipman
    In International Conference on Learning Representations (ICLR), 2022
    Oral Presentation [top 1.5%].
  9. AAAI
    Pretrained transformers as universal computation engines
    Kevin Lu, Aditya Grover, Pieter Abbeel, and Igor Mordatch
    In AAAI Conference on Artificial Intelligence, 2022

2021

  1. NeurIPS
    BCD nets: Scalable variational approaches for Bayesian causal discovery
    Chris Cundy, Aditya Grover, and Stefano Ermon
    Advances in Neural Information Processing Systems (NeurIPS), 2021
  2. NeurIPS
    Pirank: Scalable learning to rank via differentiable sorting
    Robin Swezey, Aditya Grover, Bruno Charron, and Stefano Ermon
    Advances in Neural Information Processing Systems (NeurIPS), 2021
  3. NeurIPS
    Decision transformer: Reinforcement learning via sequence modeling
    Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel, Aravind Srinivas, and Igor Mordatch
    Advances in Neural Information Processing Systems (NeurIPS), 2021
  4. NeurIPS
    Moser flow: Divergence-based generative modeling on manifolds
    Noam Rozen, Aditya Grover, Maximilian Nickel, and Yaron Lipman
    Advances in Neural Information Processing Systems (NeurIPS), 2021
    Outstanding Paper Award.
  5. Joule
    Bayesian learning for rapid prediction of lithium-ion battery-cycling protocols
    Benben Jiang, William E Gent, Fabian Mohr, Supratim Das, Marc D Berliner, Michael Forsuelo, Hongbo Zhao, Peter M Attia, Aditya Grover, Patrick K Herring, and  others
    Joule, 2021
  6. ICLR
    Anytime sampling for autoregressive models via ordered autoencoding
    Yilun Xu, Yang Song, Sahaj Garg, Linyuan Gong, Rui Shu, Aditya Grover, and Stefano Ermon
    In International Conference on Learning Representations (ICLR), 2021
  7. ICLR
    Reset-free lifelong learning with skill-space planning
    Kevin Lu, Aditya Grover, Pieter Abbeel, and Igor Mordatch
    In International Conference on Learning Representations (ICLR), 2021
  8. AISTATS
    Learning from an Exploring Demonstrator: Optimal Reward Estimation for Bandits
    Wenshuo Guo, Kumar Krishna Agrawal, Aditya Grover, Vidya Muthukumar, and Ashwin Pananjady
    In International Conference on Artificial Intelligence and Statistics (AISTATS), 2021

2020

  1. Nature
    Closed-loop optimization of extreme fast charging for batteries using machine learning
    Peter Attia, Aditya Grover, Norman Jin, Kristen Severson, Bryan Cheong, Jerry Liao, Michael H Chen, Nicholas Perkins, Zi Yang, Patrick Herring, Muratahan Aykol, Stephen Harris, Richard Braatz, Stefano Ermon, and William Chueh
    Nature, 2020
  2. ICML
    Fair Generative Modeling via Weak Supervision
    Kristy Choi, Aditya Grover, Trisha Singh, Rui Shu, and Stefano Ermon
    In International Conference on Machine Learning (ICML), 2020
  3. AISTATS
    Permutation Invariant Graph Generation via Score-Based Generative Modeling
    Chenhao Niu, Yang Song, Jiaming Song, Shengjia Zhao, Aditya Grover, and Stefano Ermon
    In International Conference on Artificial Intelligence and Statistics (AISTATS), 2020
  4. AAAI
    AlignFlow: Cycle Consistent Learning from Multiple Domains via Normalizing Flows
    Aditya Grover, Christopher Chute, Rui Shu, Zhangjie Cao, and Stefano Ermon
    In AAAI Conference on Artificial Intelligence, 2020

2019

  1. NeurIPS
    Bias Correction of Learned Generative Models using Likelihood-Free Importance Weighting
    Aditya Grover, Jiaming Song, Alekh Agarwal, Kenneth Tran, Ashish Kapoor, Eric Horvitz, and Stefano Ermon
    In Advances in Neural Information Processing Systems (NeurIPS), 2019
  2. ICML
    Graphite: Iterative generative modeling of graphs
    Aditya Grover, Aaron Zweig, and Stefano Ermon
    In International Conference on Machine Learning (ICML), 2019
  3. ICML
    Neural Joint Source-Channel Coding
    Kristy Choi, Kedar Tatwawadi, Aditya Grover, Tsachy Weissman, and Stefano Ermon
    In International Conference on Machine Learning (ICML), 2019
    Long Oral Presentation.
  4. ICLR
    Stochastic Optimization of Sorting Networks via Continuous Relaxations
    Aditya Grover, Eric Wang, Aaron Zweig, and Stefano Ermon
    In International Conference on Learning Representations (ICLR), 2019
  5. AISTATS
    Uncertainty Autoencoders: Learning Compressed Representations via Variational Information Maximization
    Aditya Grover, and Stefano Ermon
    In International Conference on Artificial Intelligence and Statistics (AISTATS), 2019
  6. AISTATS
    Learning Controllable Fair Representations
    Jiaming Song, Pratyusha Kalluri, Aditya Grover, Shengjia Zhao, and Stefano Ermon
    In International Conference on Artificial Intelligence and Statistics (AISTATS), 2019

2018

  1. NeurIPS
    Streamlining variational inference for constraint satisfaction problems
    Aditya Grover, Tudor Achim, and Stefano Ermon
    In Advances in Neural Information Processing Systems (NeurIPS), 2018
  2. ICML
    Learning Policy Representations in Multiagent Systems
    Aditya Grover, Maruan Al-Shedivat, Jayesh K Gupta, Yura Burda, and Harrison Edwards
    In International Conference on Machine Learning (ICML), 2018
    Long Oral Presentation [top 8.6%].
  3. ICML
    Modeling sparse deviations for compressed sensing using generative models
    Manik Dhar, Aditya Grover, and Stefano Ermon
    In International Conference on Machine Learning (ICML), 2018
    Long Oral Presentation [top 8.6%].
  4. AISTATS
    Variational Rejection Sampling
    Aditya Grover, Ramki Gummadi, Miguel Lazaro-Gredilla, Dale Schuurmans, and Stefano Ermon
    In International Conference on Artificial Intelligence and Statistics (AISTATS), 2018
  5. AISTATS
    Best arm identification in multi-armed bandits with delayed feedback
    Aditya Grover, Todor Markov, Peter Attia, Norman Jin, Nicholas Perkins, Bryan Cheong, Michael Chen, Zi Yang, Stephen Harris, William Chueh, and Stefano Ermon
    In International Conference on Artificial Intelligence and Statistics (AISTATS), 2018
  6. AAMAS
    Evaluating Generalization in Multiagent Systems using Agent-Interaction Graphs
    Aditya Grover, Maruan Al-Shedivat, Jayesh K Gupta, Yuri Burda, and Harrison Edwards
    In International Conference on Autonomous Agents and Multiagent Systems (AAMAS), 2018
  7. AAAI
    Boosted generative models
    Aditya Grover, and Stefano Ermon
    In AAAI Conference on Artificial Intelligence, 2018
  8. AAAI
    Flow-GAN: Combining maximum likelihood and adversarial learning in generative models
    Aditya Grover, Manik Dhar, and Stefano Ermon
    In AAAI Conference on Artificial Intelligence, 2018
    Oral Presentation [top 10%].

2016

  1. NeurIPS
    Variational Bayes on Monte Carlo Steroids
    Aditya Grover, and Stefano Ermon
    In Advances in Neural Information Processing Systems (NeurIPS), 2016
  2. KDD
    node2vec: Scalable Feature Learning for Networks
    Aditya Grover, and Jure Leskovec
    In International Conference on Knowledge Discovery and Data Mining (KDD), 2016
    Oral Plenary Presentation [acceptance rate: 70/784 (8.9%)].
  3. IJCAI
    Contextual Symmetries in Probabilistic Graphical Models
    Ankit Anand, Aditya Grover,  Mausam, and Parag Singla
    In International Joint Conference on Artificial Intelligence (IJCAI), 2016
    Best Paper Award at the International Workshop on Statistical Relational AI (StarAI).

2015

  1. KDD
    A deep hybrid model for weather forecasting
    Aditya Grover, Ashish Kapoor, and Eric Horvitz
    In International Conference on Knowledge Discovery and Data Mining (KDD), 2015
  2. IJCAI
    ASAP-UCT: abstraction of state-action pairs in UCT
    Ankit Anand, Aditya Grover,  Mausam, and Parag Singla
    In International Joint Conference on Artificial Intelligence (IJCAI), 2015